News

Allulose Patents Granted to Bonumose for Unique Enzymatic Conversion Process

Bonumose is pleased to announce that the U.S. Patent & Trademark Office has issued U.S. Patent No. 11,078,506 for “Enzymatic Production of D-Allulose”.

This patent issuance follows Bonumose’s Allulose U.S. Patent No. 11,053,528 (July 6, 2021) and allulose U.S. Patent No. 10,704,069 (July 7, 2020). Bonumose has been issued additional Allulose patents and/or has patent applications pending in all major sugar-consuming and sugar-producing countries. Bonumose also has a broad patent portfolio for Tagatose production, as well as for related materials and processes.

The global Allulose market recently was described as a “dumpster fire” (Food Navigator-USA, June 28, 2021).

Bonumose’s approach is markedly different from other Allulose producers.

The standard way to produce Allulose involves a low-yield enzymatic conversion of fructose to Allulose – a conversion that is inherently limited because the enzymatic reaction is reversible. There are multiple processing steps, including the following major ones: (1) starch dextrinization; (2) liquefaction to produce glucose; (3) isomerization of glucose to produce a syrup with 42% fructose content (limited yield due to a reversible enzymatic reaction); (4) separation of fructose from glucose and other sugars in the syrup; (5) partial enzymatic conversion of fructose to produce a syrup with 25%-30% Allulose (limited yield due to a reversible enzymatic reaction); (6) separation of Allulose from fructose; and (7) purification and crystallization.

Alternatively, fructose can be produced by (1) hydrolyzing sucrose (sugar), (2) separating the fructose from glucose (theoretical 50% yield), then continuing from step #5 shown above and/or converting the glucose to fructose as in step #3 above.

Bonumose’s patented process is much more streamlined and eliminates several processing steps. After starch dextrinization, Bonumose’s proprietary blend of enzymes combine in an irreversible enzymatic reaction to directly convert maltodextrin to ~90% yields of Allulose. This is followed by relatively simple purification and crystallization for pure granulated Allulose.

In summary, Bonumose starts with a less processed feedstock (maltodextrin instead of fructose) and still achieves Allulose yields that are 3X-4X higher than fructose-to-Allulose conversions.

Due to Bonumose’s patented enzymatic technology breakthrough, as well as Bonumose’s other technical and business model innovations, Bonumose expects to be able to reduce the cost of Allulose to food & beverage producers globally.

In pursuing its mission to make great-tasting, healthy rare sugars affordable for more people around the world, Bonumose will continue to devote the resources necessary to extend and defend its global intellectual property rights.

Recent News

12/11/2024

Liquet™ Medical Inc. Receives FDA 510(k) Clearance for the Versus™ Catheter

Liquet Medical Inc., a pioneering medical device company committed to advancing patient care through innovative technologies, today announced it has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for its Versus™ Catheter. This innovative medical device is set to enhance the treatment of pulmonary artery blood clots by offering real-time pulmonary artery

12/03/2024

ivWatch Named to Inc.’s 2024 Best in Business List in Health Products Category

ivWatch, LLC, the IV safety company, is proud to announce it has been named to the Inc. 2024 Best in Business list in the Health Products category. Inc.’s annual Best in Business Awards celebrate the exceptional achievements and contributions of companies that have made a profound impact on their industries and on society at large.

12/03/2024

New Report Finds Bioscience Sector Generates Over $3 Trillion for U.S. Economy

The Biotechnology Innovation Organization (BIO) and the Council of State Bioscience Associations (CSBA) released new national and state-level data on the U.S. bioscience industry’s economic performance, its impacts, and its geographic footprint. The report, “The U.S. Bioscience Economy: Driving Economic Growth and Opportunity in States and Regions,” analyzes the sector’s economic impact via employment, overall